授業の目的 【日本語】 | | 多自由度システムの巨視的振舞いを理解し,普遍的性質を見出すための数学・物理学の概念や解析手法を講述する。特に,臨界現象,相転移現象を題材にして,繰り込み群の手法を理解する。
|
|
|
授業の目的 【英語】 | | The aim of this course is to help students acquire an understanding of mathematical and physical methods to investigate the macroscopic behavior in the systems of many-degrees of freedom. We study the phase transition phenomena using renormalization group technique as course topics. |
|
|
到達目標 【日本語】 | | 複雑系科学,特に非線形・非平衡・散逸系の物理学や場の理論における諸問題を理論的に解析するための数学的・物理的手法を理解し,応用できるようにする。 |
|
|
到達目標 【英語】 | | The purpose of this course is to understand the basic concept of phase transition and critical phenomena, and to obtain the renormalization group technique to study them. |
|
|
授業の内容や構成 | | 社会,生物,情報システムなどの複雑系は,多粒子の集団による非線形相互作用が行われる多自由度システムである。
この講義では,それら多自由度系の巨視的振舞いを理解し普遍的性質を見出すための数学・物理学の概念や解析手法を講述する。
統計力学系におけるスピン模型における相転移現象の解説や表現手法の基礎から始めて,多体系から構成される巨視的現象を解析する,繰り込み群という数学手法の概念と定式化を行う。
その手法により,多様な多体現象の普遍性を理解し,場の理論・臨界現象の概念により多くの多自由度系の現象を理解し制御する手法について講述する。
〔計画〕
1. 相転移現象
2. 統計力学系
3. 平均場理論
4. 繰り込み変換
5. 繰り込み群方程式
6. 臨界現象の異常次元
7. 巨視的現象の普遍性
8. 総括 | Complex Systems such as social, biological, informational and material systems are non-linear interacting systems of many degrees of freedom.
The purpose of this course is to help students acquire
an understanding of the fundamental concepts and mathematical skills of renormalization group technique for investigation of phase transition in many body systems.
This course will be divided in 8 chapters as follows:
1. Phase transition phenomena
2. Statistical systems
3. Mean field theories
4. Renormalization transformation
5. Renormalization group equation
6. Anomalous dimension and critical exponent in critical phenomena
7. Universality of phase transition and macroscopic phenomena
8. Summary
|
|
|
履修条件・関連する科目 | | |
|
成績評価の方法と基準 | | 課題レポートによって講義の理解度を評価し,成績評価は合計100点満点で60点以上を合格とする。A〜Fの評定は合計点に基づいて行う。 | |
|
|
教科書・参考書 | | 参考資料を配布し,ウェブにも掲示する。
参考文献も資料中で示す。 | References
The Renormalization Group and the e - expansion
Physics Report Vol. 91 #5 233-295 (1974) K. G. Wilson and J. Kogut
Field Theory, Renormalization Group and Critical Phenomena
D. J. Amit and V. M. Mayor |
|
|
課外学習等(授業時間外学習の指示) | | 数回にわたって演習問題をレポート課題として出題する。 | |
|
|
授業開講形態等 | | |
|
遠隔授業(オンデマンド型)で行う場合の追加措置 | | |
|