学部・大学院区分
Undergraduate / Graduate
農・博前
時間割コード
Registration Code
2930010
科目区分
Course Category
C類
Category C
科目名 【日本語】
Course Title
データサイエンス特別講義4
科目名 【英語】
Course Title
Special Lecture on Data Science 4
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
白武 勝裕 ○ 太田垣 駿吾 兒島 孝明
担当教員 【英語】
Instructor
SHIRATAKE Katsuhiro ○ OTAGAKI Shungo KOJIMA Takaaki
単位数
Credits
1
開講期・開講時間帯
Term / Day / Period
春集中 その他 その他
Intensive(Spring) Other Other
対象学年
Year
1年
1
授業形態
Course style



授業の目的 【日本語】
Goals of the Course(JPN)
データサイエンス特別講義1,2,3を基礎とし,トランスクリプトミクスの実際,プロテオミクスやメタボロミクスを含めたマルチオミクスの概要を学ぶ.
授業の目的 【英語】
Goals of the Course
Based on Data Sciences 1, 2 and 3, this course introduces practical approaches of transcriptomics and outline of multi-omics including proteomics and metabolomics.
到達目標 【日本語】
Objectives of the Course(JPN)
Based on Data Sciences 1, 2 and 3, in this course, students get knowledge of practical approaches of transcriptomics and outline of multi-omics including proteomics and metabolomics.
到達目標【英語】
Objectives of the Course
授業の内容や構成
Course Content / Plan
1. Preparing a computing environment for NGS analysis in Windows/Mac (Instructions for Windows Subsystem for Linux 2; Instructions for homebrew/Bioconda to install popular bioinformatics tools; Instructions for downloading NGS data from Sequence Read Archive)
2. Guidance for RNA-Seq data analysis pipelines (Read mapping, calculation of the expression values and statistical analysis)
3. Genome-wide analysis of binding sites of a DNA-binding transcription factor (Mapping, Peak detection and Identification of promoter regulated by the target transcription factor)
4. Integrated data mining with biological big data using R (Correlation analysis and Clustering)
5. 16S rDNA metagenome analysis using bioinformatics tools (LocalBLAST and QIIME2)
6. Outline of proteomics and metabolomics
7. Application of multi-omics

1. Preparing a computing environment for NGS analysis in Mac (Instructions for homebrew/Bioconda to install popular bioinformatics tools; Instructions for downloading NGS data from Sequence Read Archive)
2. Guidance for RNA-Seq data analysis pipelines (Read mapping, calculation of the expression values and statistical analysis)
3. Genome-wide analysis of binding sites of a DNA-binding transcription factor (Mapping, Peak detection and Identification of promoter regulated by the target transcription factor)
4. Integrated data mining with biological big data using R (Correlation analysis and Clustering)
5. 16S rDNA metagenome analysis using bioinformatics tools (LocalBLAST and QIIME2)
6. Outline of proteomics and metabolomics
7. Application of multi-omics
履修条件・関連する科目
Course Prerequisites and Related Courses
Data Sciences 1, 2 and 3
成績評価の方法と基準
Course Evaluation Method and Criteria
Evaluate each lesson by attendance and short report.
教科書・テキスト
Textbook
None
参考書
Reference Book
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
After lecture, students should learn about practice of omics study by reading scientific papers and by accessing to webtools for omics study.
使用言語
Language Used in the Course
授業開講形態等
Lecture format, etc.
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)