学部・大学院区分
Undergraduate / Graduate
農・博前
時間割コード
Registration Code
2930011
科目区分
Course Category
C類
Category C
科目名 【日本語】
Course Title
データサイエンス特別講義5
科目名 【英語】
Course Title
Special Lecture on Data Science 5
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
西内 俊策 ○
担当教員 【英語】
Instructor
NISHIUCHI Shunsaku ○
単位数
Credits
1
開講期・開講時間帯
Term / Day / Period
秋集中 その他 その他
Intensive(Fall) Other Other
対象学年
Year
1年
1
授業形態
Course style



授業の目的 【日本語】
Goals of the Course(JPN)
授業の目的 【英語】
Goals of the Course
The aim of this class is to help students acquire programming skills that will be useful for important analytical work in research.
Specifically, students will learn to program the process of pre-processing and visualization of data obtained in research activities, which is necessary to ensure the reproducibility of the analysis work.
到達目標 【日本語】
Objectives of the Course(JPN)
By the end of the course, students should be able to do the following:
1. Apply data preprocessing to aid in the analysis and visualization.
2. Use Markdown in R and/or Python to aid in the basic visualization of experimental data.
到達目標【英語】
Objectives of the Course
授業の内容や構成
Course Content / Plan
Contents:
1. Introduction: What is a tidy data? The importance of data preprocessing.
2. Introduction: What is your data? How do you visualize your data?
3. Preparing for data preprocessing and visualization: Select and install library.
4. Preparing for data preprocessing and visualization: Plan for data preprocessing and visualization.
5. Data preprocessing.
6. Data visualization.

Students should bring their own PC with Anaconda or Rstudio. Student may bring their own experimental data for analysis and visualization.
履修条件・関連する科目
Course Prerequisites and Related Courses
Students should acquire the credits for “Data Sciences 1”, “Data Sciences 2”, and “Data Sciences 3” before this course.
成績評価の方法と基準
Course Evaluation Method and Criteria
Grading will be decided based on attendance and the quality of the students’ programming performance.
教科書・テキスト
Textbook
Will be introduced in the class.
参考書
Reference Book
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
Preparation and Review
使用言語
Language Used in the Course
授業開講形態等
Lecture format, etc.
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)