学部・大学院区分
Undergraduate / Graduate
多・博前
時間割コード
Registration Code
3212204
科目区分
Course Category
B類(講究)
Category B
科目名 【日本語】
Course Title
幾何学講究4
科目名 【英語】
Course Title
Seminar on Geometry 4
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
太田 啓史 ○
担当教員 【英語】
Instructor
OHTA Hiroshi ○
単位数
Credits
4
開講期・開講時間帯
Term / Day / Period
秋集中 その他 その他
Intensive(Fall) Other Other
授業形態
Course style

学科・専攻
Department / Program
多元数理科学研究科
必修・選択
Required / Selected


授業の目的 【日本語】
Goals of the Course(JPN)
Theme: Symplectic geometry

Purpose of this course: Studying foundations of symplectic geometry.

(以下M1の人対象。M2以上については応相談)
古典ハミルトン力学から生まれたシンプレクティック幾何学の基礎を学ぶ。
複素幾何におけるケーラー多様体は、シンプレクティック多様体のよい例を与えるが、シンプレクティック構造はより柔軟な側面をもつ特徴がある。シンプレクティック構造は、プリミティブな形でいろいろな空間(ある種のモジュライ空間など)に自然に現れ、空間の構造を解明する際に重要な役割を果たすことがある。擬正則写像の理論、Floer理論やある種の位相的場の理論など、その後の広がりは多彩である。M1M2の学年を問わず基礎知識が覚束ない場合は、1年目はその基礎的な事柄を例とともに習熟することが目的になる。
2年目には、具体的にテーマを選んで突っ込んで取り組み,その中で、各人問題をみつけてそれに取り組むことを目指す。 広い数学的視野を養い, 確かな数学的能力と知識を基礎に, 課題を解決することを目指す。
授業の目的 【英語】
Goals of the Course
到達目標 【日本語】
Objectives of the Course(JPN))
テキストに関連する基礎知識を自らの数学的理解として習得し、それを論理的に明快に説明できるようになることは第一の目標となる。更に得た数学的知識を運用し、新たな問題を見出してその解決を目指す。
到達目標 【英語】
Objectives of the Course
授業の内容や構成
Course Content / Plan
以下のテキストを用いて輪講形式でセミナーを行う。必ず、事前にテキストを実際に手にとって読んでみてから判断すること。毎回のセミナーの事前準備には相当の時間と労力をかける必要があると思って欲しい。テキストを要約してくるのが準備ではない。ノートに自ら再構成し論理、計算を補っていくとテキストより量が増えるのが普通である。もし基本的な数学の学習スタイルが確立していない、例えば、「自分を誤摩化さず、曇りなく隅々まで数学を理解した上で表現する」ことが不十分と判断した場合は、それができるようになることが第一目標となる。その際は別のテキストによる基礎的な内容に変更する。セミナー希望者は、必ずあらかじめメールで連絡をとって下さい。希望者が全体で5名を超えた場合には、選抜することがあります。

You should read the textbook thoroughly in advance and reconstruct the mathematical context by yourself.
(This is a usual style of studying mathematics.)
After these preparation, you present what you studied at our seminar.
履修条件
Course Prerequisites
学部3年生までに学習すること全般及び多様体論、微分形式には習熟していること。(コ)ホモロジー、基本群など、
トポロジーの基本的なことは既知とする。知らなければ自習していくことが不可欠。確かな理解と運用が必要。必要なら適当な本を紹介する。

This course is basically held in Japanese.
関連する科目
Related Courses
広い意味で幾何学の関する科目。
成績評価の方法と基準
Course Evaluation Method and Criteria
少人数クラスにおける発表、学習、研究、それらの内容に基づき評価する。
なお、過度な欠席の場合は、発表内容不足の観点で不可となることもある。
教科書・テキスト
Textbook
M. Audin and M. Damian, `Morse theory and Floer homology', Springer

H. Hofer and E. Zehnder, `Symplectic invariants and Hamiltonian dynamics', Birkhauser.
参考書
Reference Book
必要な時に適宜紹介する。
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
注意事項
Notice for Students
特になし
他学科聴講の可否
Propriety of Other department student's attendance
他学科聴講の条件
Conditions of Other department student's attendance
希望する場合、事前にメールで連絡を下さい。
レベル
Level
キーワード
Keyword
symplectic geometry, Hamiltoniann dynamics, Morse theory
履修の際のアドバイス
Advice
http://www.ms.u-tokyo.ac.jp/~furuta/advice.pdf
をぜひ参考にして下さい。
授業開講形態等
Lecture format, etc.
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)