学部・大学院区分
Undergraduate / Graduate
多・博前
時間割コード
Registration Code
3213056
科目区分
Course Category
C類(実習)
Category C
科目名 【日本語】
Course Title
幾何学実習4
科目名 【英語】
Course Title
Practical Class on Geometry 4
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
糸 健太郎 ○
担当教員 【英語】
Instructor
ITO Kentaro ○
単位数
Credits
1
開講期・開講時間帯
Term / Day / Period
秋集中 その他 その他
Intensive(Fall) Other Other
授業形態
Course style

学科・専攻
Department / Program
多元数理科学研究科
必修・選択
Required / Selected


授業の目的 【日本語】
Goals of the Course(JPN)
テーマ「擬リーマン空間形の幾何学 -双曲幾何とその周辺の幾何学-」

この少人数クラスでは,擬リーマン空間形の幾何学およびその周辺を学ぶ.擬リーマン多様体とは正定値とは限らない計量を備えた多様体である.その中でも空間形 (space form) というのは断面曲率一定の空間のことであり,球面やユークリッド空間に代表されるような等質性や対称性を備えている.双曲空間は断面曲率-1のリーマン空間形であるが,近年はそのローレンツ幾何版にあたる反ド・ジッター空間の研究も盛んである.これら空間形の中の曲面論は重要なテーマの1つである.この少人数クラスでは,この周辺の幾何学であれば,枠にとらわれず自由に学ぶことも可能である.なお,教員紹介冊子も参考にして欲しい.

Theme:Geometry of Pseuso-Riemannian space form -hyperbolic geometry and its relatives-

Pseudo-Riemannian manifolds are manifolds with indefinite metrics. Space-forms are pseudo-Riemannian manifolds with constant sectional curvature; for example, sphere, euclidian space and hyperbolic space. One of the main topics of this class is surface theory in these space-forms.
授業の目的 【英語】
Goals of the Course
到達目標 【日本語】
Objectives of the Course(JPN))
擬リーマン空間形の幾何について自分の言葉で説明できるようになる.

The goals of this course are to obtain basic knowledge about geometry of pseudo-Riemannian space-forms.
到達目標 【英語】
Objectives of the Course
授業の内容や構成
Course Content / Plan
テキストは学生との面談の上で決める.学生の知識や学力によって様々なテキストが考えられる.教科書欄もしくは参考書欄のテキスト,およびそれに近いテキストを用いる.(参考書に挙げたものは実際にセミナーのテキストとして使用したものである.)

The text book will be chosen from the following references.
履修条件
Course Prerequisites
This course is taught in Japanese.
関連する科目
Related Courses
幾何学の科目
成績評価の方法と基準
Course Evaluation Method and Criteria
セミナーの発表と修士論文の内容で評価する.
教科書・テキスト
Textbook
J. N. Clelland, "From Frenet to Cartan: The Method of Moving Frames", AMS
L. W. Tu, "Differential Geometry", Springer
M. Hamilton, "Mathematical Gauge Theory", Springer
R. W. Sharpe, "Differential Geometry", Springer
F. Helein, "Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems", Birkhauser
西川青季「幾何学的変分問題」岩波書店
参考書
Reference Book
B. O'Neill, "Semi-Riemannian Geometry", Academic Press
G. Jensen, E. Musso and L. Nicolodi, "Surfaces in Classical Geometries", Springer
井ノ口順一「曲面と可積分系」現代数学社
小沢哲也「曲線・曲面と接続の幾何」培風館
加須栄篤「リーマン幾何学」培風館
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
注意事項
Notice for Students
連絡はメールでお願いします.
他学科聴講の可否
Propriety of Other department student's attendance
不可
他学科聴講の条件
Conditions of Other department student's attendance
-
レベル
Level
2
キーワード
Keyword
擬リーマン幾何,双曲幾何,ローレンツ幾何,リー群,等質空間,対称空間,曲面論
履修の際のアドバイス
Advice
多様体やリー群,微分形式の基礎を知っていることが望ましいが,知らなければそのあたりの知識の習得も同時に行う.
授業開講形態等
Lecture format, etc.
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)