授業の目的 【日本語】 Goals of the Course(JPN) | | Seminar on Convex Geometry in Complex Geometry and Diophantine Geometry. (1) Geometry of Numbers. (2) Alexandrov-Fenchel Inequality and Complex Geometry. (3) Brunn-Minkowski Inequality in Geometry and Analysis |
|
|
授業の目的 【英語】 Goals of the Course | | Seminar on Convex Geometry in Complex Geometry and Diophantine Geometry. (1) Geometry of Numbers. (2) Alexandrov-Fenchel Inequality and Complex Geometry. (3) Brunn-Minkowski Inequality in Geometry and Analysis |
|
|
到達目標 【日本語】 Objectives of the Course(JPN)) | | (1) Search for the relationship between Minkowski's Convex Body Theorem and the Diophantine analogue of Ahlfors' Lemma on Logarithmic Derivative for holomorphic curves into a projective variety proposed by Vojta. (2) To understand the role of Measure Concentration Phenomenon in Diophantine Geometry. (3) To understand the role of Convex Geometry in YDT Conjecture. |
|
|
到達目標 【英語】 Objectives of the Course | | (1) Search for the relationship between Minkowski's Convex Body Theorem and the Diophantine analogue of Ahlfors' Lemma on Logarithmic Derivative for holomorphic curves into a projective variety proposed by Vojta. (2) To understand the role of Measure Concentration Phenomenon in Diophantine Geometry. (3) To understand the role of Convex Geometry in YDT Conjecture. |
|
|
授業の内容や構成 Course Content / Plan | | セミナー形式で時代を画する論文を読む. Reading epoc making papers. |
|
|
履修条件 Course Prerequisites | | 学部の複素解析,幾何学,測度論を知っていると非有に良い. しかしこれらをセミナーを通して学ぶことも可能である. A good background from undergraduate complex analysis. geometry and measure theory. However, students can learn these basics through the seminar. |
|
|
関連する科目 Related Courses | | |
|
成績評価の方法と基準 Course Evaluation Method and Criteria | | セミナーでの発表をもとに成績を評価する.
evaluation based on presentations at the seminar. |
|
|
教科書・テキスト Textbook | | Fukshansky, ``Geometry of Numbers''.
Bombieri-Gubler,``Heights in Diophantine Geometry''.
Ahlfors,``The theory of meromorphic curves''.
Meckes, ``Concentration of Measure and the Compact Classical Groups''.
Berndtsson,``An introduction to things d-bar''. |
|
|
参考書 Reference Book | | GuedjーZeriahi,``Degenerate complex MongeーAmpere equations''.
Shoshichi Kobayashi, Hyperbolic Complex Spaces''. |
|
|
課外学習等(授業時間外学習の指示) Study Load(Self-directed Learning Outside Course Hours) | | 数学をマスターするには時間を(日本的表現だが)湯水のように使わないとできないので,自主学習が何よりも重要である. |
|
|
注意事項 Notice for Students | | 基本的に対面で行うが,必要があれば遠隔実施もあり得る. |
|
|
他学科聴講の可否 Propriety of Other department student's attendance | | |
|
他学科聴講の条件 Conditions of Other department student's attendance | | |
|
レベル Level | | |
|
キーワード Keyword | | Convex Geometry. Complex Geometry. Diophantine Geometry. |
|
|
履修の際のアドバイス Advice | | |
|
授業開講形態等 Lecture format, etc. | | |
|
遠隔授業(オンデマンド型)で行う場合の追加措置 Additional measures for remote class (on-demand class) | | |
|