授業の目的 【日本語】 Goals of the Course(JPN) | | 本講義では、主にMilnerによって提案されたCCS (Calculus for Communicating Systems)に対してプロセス計算について説明する.動作的意味は通信における双模倣性によって定義される.
CCSは通信システムを構成するシステムにおける構成子にたいして代数的な意味を持つことが示される.さらに,振る舞いの観測に応じて異なる振る舞い等価性が構成されること示す.時間に関して拡張された通信プロセスについても議論する. |
|
|
授業の目的 【英語】 Goals of the Course | | This course discusses the process calculi that have been studied to
formulate concurrency, mainly focusing on Milner’s CCS (Calculus for
Communicating Systems). The operational semantics is understood as
the bisimularity of communication capability. CCS is shown to hold
algebraic properties for its operations. We further
discuss the timed property of concurrent systems to extend process
calculi to timed behavior and apply the verification of timed systems
such as embedded systems. |
|
|
到達目標 【日本語】 Objectives of the Course(JPN) | | 並行計算を表現する通信プロセス計算の体系について習得する。
通信プロセス計算として代表的なMilnerのCCS(CalculusforCommunicatingSystems)に対して双模倣性に基づく代数的意味論を示す。
さらに振舞いを特徴づける時相論理の拡張について示し,基本的な検証手法について示す。
最後に,並行システムの時間的な性質の特徴づけについて述べ,組み込みシステムなど時間に依存したシステムのモデル化と検証手法の基礎を習得する。 |
|
|
到達目標 【英語】 Objectives of the Course | | Concurrency is ubiquitous these days with the development of computer hardware
and network. This lecture discusses the fundamentals of the theory and practice of
concurrency to characterize and analyze the behavior of concurrent computation and
discuss the timed extension in communicating processes. |
|
|
授業の内容や構成 Course Content / Plan | | 並行計算をラベル付き遷移システムとしてモデル化する。
複数のラベル付き遷移システムがラベルの同期による相互作用を及ぼしながら計算が進行する。
並行計算を特徴づける概念として,双模倣性から導かれる等価関係について習得する。
双模倣性は余帰納的な概念,ゲーム意味論によって特徴づけられることを示す。
〔計画〕
1. イントロダクション
2. 強等価性
3. 弱等価性
4. プロセス計算の意味階層
5. 時相論理HMLによる特徴付け
6. 時間概念によるプロセス計算の拡張
7. 総合討論 | Concurrency is modeled in terms of labeled transition systems with
communication. We show process calculi as the formal systems for
analyzing concurrent systems and their logical characterization.
Also, we discuss the timed extension of processes.
1. Introduction
2. Strong bisimularity
3. Weak bisimularity
4. Process calculi
5. Hennessy/Milner Logic
6. Timed extension
7. Discussions |
|
|
履修条件・関連する科目 Course Prerequisites and Related Courses | | |
|
成績評価の方法と基準 Course Evaluation Method and Criteria | | 各回の演習課題を50%と最終レポート課題を50%,合計100点満点で60点以上を合格とする。 | Exercises. |
|
|
教科書・参考書 Textbook/Reference book | | Davide Sangiorgi: Introduction to Bisimulation and Coinduction
Cambridge University Press, 2011
Doi: 10.1017/CBO9780511777110 | Davide Sangiorgi: Introduction to Bisimulation and Coinduction
Cambridge University Press, 2011
Doi: 10.1017/CBO9780511777110 |
|
|
課外学習等(授業時間外学習の指示) Study Load(Self-directed Learning Outside Course Hours) | | 各回において演習課題を出し,終了時にレポート課題を出題する。 | Several exercises are given. |
|
|
授業開講形態等 Lecture format, etc. | | 原則として対面で実施する.必要に応じてリモート配信する場合がある. |
|
|
遠隔授業(オンデマンド型)で行う場合の追加措置 Additional measures for remote class (on-demand class) | | |
|