授業の目的 【日本語】 Goals of the Course(JPN) | | 入門的な有機化学の理解を目的として、学生さんが基本的な有機化学を安く理解するための論理的なフレームワークを構築するのに役立つようにこのコースは開設されました。 先ず、有機分子構造と電子密度組成が有機化学反応のパターンにどのように関連しているかを学び、その知識を基に分子内または分子間有機反応のメカニズムを調査理解し、進行性反応シーケンスの問題を解決することを可能にします。 |
|
|
授業の目的 【英語】 Goals of the Course | | This course was designed to promote an understanding of introductory organic chemistry and to help students build a logical framework of fundamental organic chemistry. The course emphasizes how strongly the organic molecular structures and the electron density compositions are related to typical types of organic chemical reactions. Students are able to grasp rationalized mechanisms for intramolecular and intermolecular organic reactions and solve problems of progressive reaction sequences based on the knowledge learned through the course contents. |
|
|
到達目標 【日本語】 Objectives of the Course(JPN)) | | このコースの主な目的は、学生が基本的な有機化学を理解するための論理的な枠組みを構築できるようにすることです。 有機化学1は、原子の電子配置や混成や軌道間相互作用による様々な分子構造の構築から始まり、分子の電子密度組成や分布を取り入れた各分子の安定化を求める化学反応を学びます。古典的な反応メカニズムに関する実践的な演習により、学生さんは有機分子間または有機分子内で起こる古典的な反応機構に現れた特定のパターンを分別できます。コースの内容で学んだ知識に基づいて、様々な進行性反応機構の問題を解決するこを最終目標とします。 |
|
|
到達目標 【英語】 Objectives of the Course | | The primary purpose of this course is to help students build a logical framework for comprehending fundamental organic chemistry. Organic chemistry 1 begins with the electron configuration of atoms and the construction of various molecular structures in hybridizations and inter-orbital interactions and continues to simple chemical reactions that stabilize each of the molecular structures by incorporating the electron density composition and distribution in the molecule. Hands-on exercises on classical reaction mechanisms enable students to distinguish classical reaction mechanisms and indicate specific patterns proceeding within or between molecules. Students can identify each organic reaction mechanism for aliphatic substrates and solve problems of progressive reaction mechanisms based on the knowledge from the course contents. |
|
|
授業の内容や構成 Course Content / Plan | | Class 1. Structure Perspective of Organic Molecules --- Atomic Electron Configuration and Construction of Organic Molecules (Hybridization). Class 2. Projection of Molecular Structures of Organic Molecules and Classification of the Isomers --- Constitutional (Chain, Position, and Functional Group) Isomers and Stereoisomers (Diastereomers and Enantiomers). Class 3. Optical Activities of Stereoisomers and Assignment of Stereoisomeric Structures --- Fischer and Newman Projections; Absolute configurations(R/S) and Optically Observed (D/L) Rotations; Specific Rotation and Enantiomeric Purity; Meso Compound. Class 4. Electron Density Configuration of Organic Molecules and Their Acidity/Basicity --- Formal Charges and Oxidation States; Acidity/Basicity and Electrophilicity/Nucleophilicity; Type of Chemical Reactions. Class 5. Potential Energy Profiles for Kinetically and Thermodynamically Favorable Reactions --- Stability of Carbocations, Carbanions, Hydrocarbon Radicals, and the Stabilization Factors (Hyperconjugation and Resonances). Class 6. Assessment of Classes 1-5 with Practice Problems. Class 7. General Trends of Aliphatic Nucleophilic Substitutions and Bimolecular Reactions (SN2) --- Efficient Substrates and Proper Leaving Groups; Reactivity of Nucleophiles and Solvent Effect; Stereochemistry; Competing Reactions. Class 8. Unimolecular Aliphatic Nucleophilic Substitutions (SN1) --- Efficient Substrates and Proper Leaving Groups; Nucleophilicity and Solvolysis; Stability of Carbocation Intermediate; Stereochemistry; Competing Reactions. Class 9. Aliphatic Eliminations --- Unimolecular (E1 and E1CB) and Bimolecular (E2) Eliminations; Thermodynamically and Kinetically favored (Zaitsev and Hofmann) Eliminations. Class 10. Types of Nucleophiles and Haloalkanes and Their Reaction Trends/Overview (Substitutions & Eliminations). Class 11. Assessment of Classes 7-10 with Practice Problems. Class 12. Nomenclature of Organic Compounds --- Saturated/Unsaturated Hydrocarbons; Functional Groups; Aromatic Hydrocarbons; Stereochemical Assignments; Fused Rings (Spiroalkanes and Bicyclo/Tricycloalkanes). Class 13. Structures and Stereochemistry of Cycloalkanes and their Stability and Reactivity. Class 14. Preparation of Haloalkanes (Radical Reactions) --- Potential Energy Profiles of Reaction Coordinates. Class 15. Assessment of Overall Classes with Practice Problems (1-14). |
|
|
履修条件 Course Prerequisites | | The student should complete Fundamentals of Chemistry I and II as the prerequisite subject. |
|
|
関連する科目 Related Courses | | Physical Chemistry I, Biochemistry I |
|
|
成績評価の方法と基準 Course Evaluation Method and Criteria | | Examination [total 70%: two midterms (20% for each) and one final (30%)] and Assignment of Homework and Attendances (30%): A+(≧95), A(95>x≧x80), B(80>x≧70), C(70>x≧65), C-(65>x≧60), and F(60>x). |
|
|
不可(F)と欠席(W)の基準 Criteria for "Fail (F)" & "Absent (W)" grades | | No submission of sickness/absence reports and lack of attendance score will result in an 'F' grade: It is for the protection of other attendances in the corresponding course from the frequent absences of the specific/uncertain student(s). |
|
|
参考書 Reference Book | | Organic Chemistry (eighth edition, Global edition), Paula Yurkanis Bruice (Pearson), 2017 ISBN 10: 1-292-16034-9, Chapters 1-5, 9, and 12(1-5). |
|
|
教科書・テキスト Textbook | | Organic Chemistry: Structure and Function (Eighth Edition), Peter K. Vollhardt and Neil Schore, (W. H. Freeman and Company), New York, 2018, Chapters 1-7. |
|
|
課外学習等(授業時間外学習の指示) Study Load(Self-directed Learning Outside Course Hours) | | Students are recommended to prepare each lecture by reading the corresponding chapters in the textbook and reviewing it by solving the related homework questions. NU general guideline considers the necessity of the average of 2~3 hours of personal study time per week for each credit. |
|
|
注意事項 Notice for Students | | Students are recommended to prepare each lecture by reading the corresponding chapter in the textbook and to review it by solving the related homework questions. Each assignment should be submitted at the beginning of the next class. Late or no assignment submission is the deduction point of the grade. |
|
|
他学科聴講の可否 Propriety of Other department student's attendance | | |
|
他学科聴講の条件 Conditions for Other department student's attendance | | |
|
レベル Level | | |
|
キーワード Keyword | | |
|
履修の際のアドバイス Advice | | |
|
授業開講形態等 Lecture format, etc. | | Face-to-face course(対面授業) |
|
|
遠隔授業(オンデマンド型)で行う場合の追加措置 Additional measures for remote class (on-demand class) | | |
|