学部・大学院区分
Undergraduate / Graduate
理・博前
時間割コード
Registration Code
2610202
科目区分
Course Category
B類
Category B
科目名 【日本語】
Course Title
場の理論1
科目名 【英語】
Course Title
Quantum Field Theory Ⅰ
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
早川 雅司 ○
担当教員 【英語】
Instructor
HAYAKAWA Masashi ○
単位数
Credits
2
開講期・開講時間帯
Term / Day / Period
春 火曜日 2時限
Spring Tue 2
授業形態
Course style

学科・専攻
Department / Program
理学専攻
Division of Natural Science
必修・選択
Required / Selected
選択
Elective


授業の目的 【日本語】
Goals of the Course(JPN)
場の量子論は、現時点でミクロな法則を記述する上での「言語」に相当する。本講義は、場の量子論の基礎的概念・基礎知識を習得するとともに、考察力を鍛錬することを目的とする。
授業の目的 【英語】
Goals of the Course
The elementary particle physics, which intends to explore the micrscopic structure of the world, is described by the quantum field theory. The purpose of this lecture is to learn the basic concept underlying this theory. It will help you to improve your logical approach to science as well as your understanding on quantum mechanics and special relativity.
到達目標 【日本語】
Objectives of the Course(JPN))
受講者は、スカラー場の量子化を通して場の量子論の枠組みと摂動的計算法に関する基礎的事項を習得する。
到達目標 【英語】
Objectives of the Course
The student learns the theoretical framework and the method of perturbative calculation in the quantum field theory through quantization of a single real scalar field.
授業の内容や構成
Course Content / Plan
1. 場の理論に関する概説
 場の理論の必要性、量子場の概念について学ぶ。

2. 1次元時空間における場の理論
 空間がない系の場の量子論が何かを学ぶ。

3.ローレンツ群と表現
「相対論を尊重する」とは何を意味するかを正確に把握する。 連続群やリー群の表現について学ぶ。

4.一般次元におけるスカラー場の量子化
空間方向に正則化することで自然な量子化の仕方が示唆されることを見る。

5.場の理論で計算すべき量
S行列要素、Green関数、それらを結びつけるLSZ公式について学ぶ。

6.経路積分量子化
正準量子化とは別の量子化として経路積分量子化を学ぶ。

7.摂動論
場の理論における摂動計算方法、Feynman図、Feynman規則について学ぶ。

1.Overview on quantum field theory (QFT)
We learn on the necessity of QFT and the concept of quantum field.

2.QFT on one-dimensional space-time
We learn QFT on one-dimensional space-time.

3. Lorentz group and its representations
We understand what is meant by "A system respects special relativity".

4.Quantization of fields
We see that discretization of special dimensions suggests how to quantize a field in any dimension.

5.Quantities of our interest in QFT
We learn on S matrix elements, Green function and LSZ formula.

6.Path integral quantization
We learn on path integral quantization.

7.Perturbation theory
We learn on perturbative calculation method in QFT, Feynman diagram and Feynman rule.
履修条件
Course Prerequisites
量子力学、解析力学の基礎的事項を習得済みであること。なお、本講座は、学部講義「素粒子物理学Ⅱ」との共通講座である。従って、「素粒子物理学II」として単位を取得した場合、大学院の課程で「場の理論1」の単位として取得できない・認定されない点に留意すること。
関連する科目
Related Courses
素核セミナー1
成績評価の方法と基準
Course Evaluation Method and Criteria
講義で説明される場の理論の基礎的事項に関するレポート問題に対する回答の内容で評価する。成績は総合点によって決定し、C(2020年度以降入学者はC−)以上の者を合格とする。
教科書・テキスト
Textbook
一般的な書籍とは異なるアプローチで場の理論を紹介する。ローレンツ群や表現を含む内容に関しては、久後汰一郎「ゲージ場の量子論1」(培風館)を参考にされたい。
参考書
Reference Book
S.Weinberg, The Quantum Theory of Fields: Volume I. Foundations, Cambridge University Press
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
復習で授業の内容を理解することに集中すれば、場の理論の基礎的事項は習得できる。
注意事項
Notice for Students
The lecture is given in Japanese.
他学科聴講の可否
Propriety of Other department student's attendance
他学科聴講の条件
Conditions of Other department student's attendance
角運動量の合成を含む量子力学の基礎的事項に関する理解
レベル
Level
キーワード
Keyword
履修の際のアドバイス
Advice
授業開講形態等
Lecture format, etc.
講義室で行う。
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)