学部・大学院区分
Undergraduate / Graduate
多・博前
時間割コード
Registration Code
3211002
科目区分
Course Category
A類Ⅰ(基礎科目)
Category A-1
科目名 【日本語】
Course Title
数理科学展望Ⅱ
科目名 【英語】
Course Title
Perspectives in Mathematical Science II
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
中岡 宏行 ○ 宇澤 達 岡田 聡一
担当教員 【英語】
Instructor
NAKAOKA Hiroyuki ○ UZAWA Tohru OKADA Soichi
単位数
Credits
2
開講期・開講時間帯
Term / Day / Period
秋 火曜日 3時限
Fall Tue 3
授業形態
Course style

学科・専攻
Department / Program
多元数理科学研究科
必修・選択
Required / Selected
選択


授業の目的 【日本語】
Goals of the Course(JPN)
この講義は講師三人によるオムニバス形式の英語講義である.
内容は英文を参照すること.
See English text.
授業の目的 【英語】
Goals of the Course
This course is an omnibus lecture given by 3 separate instructors.
The subjects are as follows.

Part 1 (Nakaoka): Mackey functors on finite groups
Part 2 (Okada): Algebraic approach to combinatorics
Part 3 (Uzawa): Fourier analysis and the Heisenberg group/algebra
到達目標 【日本語】
Objectives of the Course(JPN))
各講師ごとに与えられたテーマに則した問題について考察し, レポートを作成, 提出することによってテーマの理解を深める. 各テーマの内容は英文を参照すること.
See English text.
到達目標 【英語】
Objectives of the Course
Part 1: Students should become familiar with the category of finite
G-sets and acquire an understanding of the notion of Mackey functor, for
finite group G.

Part 2: Students should understand a relationship between combinatorics
and linear algebra (representation theory of Lie algebras).

Part 3: Students should become familiar with the interplay between algebra
and analysis by looking at the relationship between Fourier analysis
and the Heisenberg group/algebra
授業の内容や構成
Course Content / Plan
Part 1(Nakaoka):
I will explain some properties of the category of finite G-sets for
finite group G, and introduce the notion of a Mackey functor on G.

Part 2(Okada):
In this part, I introduce the very basics of representation
theory of the Lie algebra sl_2 and explain how to resolve purely
combinatorial problems by applying the representation theory.

Part 3 (Uzawa):
In this part, I will show how the very simple commutation relationship
[d/dx, x](f) = d/dx(xf) - x (d/dx f) = f gives rise to the Heisenberg algebra,
and how this simple relationship "governs" many phenomenon in Fourier
analysis.
履修条件
Course Prerequisites
Part 1: Undergraduate linear algebra and algebra
Part 2: Undergraduate linear algebra and algebra
Part 3: Undergraduate linear algebra, algebra, and analysis
関連する科目
Related Courses
Part 1: Undergraduate linear algebra and algebra
Part 2: Undergraduate linear algebra and algebra
Part 3: Undergraduate linear algebra, algebra, and analysis
成績評価の方法と基準
Course Evaluation Method and Criteria
Grading is based on reports for the 3 parts.
The grade is based on the two best reports for each student.
教科書・テキスト
Textbook
Part 1: Textbooks will not be used.
Part 2: Textbooks will not be used.
Part 3: Textbooks will not be used.
参考書
Reference Book
Part 1: Recommended books will be introduced in the lecture.
Part 2: Recommended books will be introduced in the lecture.
Part 3: "Fourier Series and Integrals", by Dym and McKean is highly recommended.
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
Part 1: Review of each lecture is recommended.
Part 2: Students are encouraged to review each lecture and to compute
examples.
Part 3: Students are encouraged to work out their notes after lectures.
注意事項
Notice for Students
If necessary, TACT will be used to make announcements.
他学科聴講の可否
Propriety of Other department student's attendance
Possible
他学科聴講の条件
Conditions of Other department student's attendance
Ask the instructors first.
レベル
Level
2
キーワード
Keyword
Part 1: finite group, finite G-set, Mackey functor
Part 2: Lie algebra, partially ordered set, Sperner property
Part 3: Lie algebra, groups, Fourier transforms
履修の際のアドバイス
Advice
-
授業開講形態等
Lecture format, etc.
Face-to-face lecture (+ TACT when necessary)
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)
Access to TACT is needed.