学部・大学院区分
Undergraduate / Graduate
多・博前
時間割コード
Registration Code
3211093
科目区分
Course Category
A類Ⅱ(専門科目)
Category A-2
科目名 【日本語】
Course Title
数理科学特論Ⅶ
科目名 【英語】
Course Title
Topics in Mathematical Science Ⅶ
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
CHAN Aaron kay yam ○
担当教員 【英語】
Instructor
CHAN Aaron kay yam ○
単位数
Credits
2
開講期・開講時間帯
Term / Day / Period
秋 木曜日 3時限
Fall Thu 3
授業形態
Course style

学科・専攻
Department / Program
Graduate School of Mathematics
必修・選択
Required / Selected
Selected


授業の目的 【日本語】
Goals of the Course(JPN)
有限群の表現論の基礎を紹介し、主に複素数体上の場合。特に、基本な指標理論の理解が含まれます。後半では、モジュラー表現論に移行するか、有限対称群とその関連する組み合わせ論に特化します。
授業の目的 【英語】
Goals of the Course
Introduce basics of the representation theory of finite groups, focusing mainly on the 'ordinary' case where the underlying field is the complex numbers. The first main theme of the course is to explain why this ordinary case is particularly nice to work with. This includes understanding of ordinary character theory. In the latter part, we will move into the modular setting, or specialise in the case of finite symmetric groups.
到達目標 【日本語】
Objectives of the Course(JPN))
-Understand basic properties of group algebras.
-Be able to translate between representations, characters, and modules.
-Learn to calculate ordinary characters of finite groups of small orders.
-Learn how modular setting is different from the ordinary case, or, how to work with combinatorics related to representations of the symmetric groups.
到達目標 【英語】
Objectives of the Course
-Understand basic properties of group algebras.
-Be able to translate between representations, characters, and modules.
-Learn to calculate ordinary characters of finite groups of small orders.
-Learn how modular setting is different from the ordinary case, or, how to work with combinatorics related to representations of the symmetric groups.
授業の内容や構成
Course Content / Plan
Part I - Basic:
Representations of groups and their homomorphisms, comparison with modules.
Maschke's theorem, tensor and dual, induction and restriction, permutation representations

Part II - Character theory
Characters of group, the space they form, orthogonalities, hands-on calculation

Part III - Modular group representations, or, representations of the symmetric groups
(a) Modular case: Frobenius algebra, symmetric algebra. Non-semisimplicity. Basic block theory
(b) Representations of symmetric groups: Partitions, Young tableaux, tabloid, Specht modules, Schur-Weyl duality
履修条件
Course Prerequisites
Linear algebra is necessary. Basic knowledge of groups, rings, and modules.
関連する科目
Related Courses
None
成績評価の方法と基準
Course Evaluation Method and Criteria
Homework assignments.
教科書・テキスト
Textbook
Will be prepared as the course goes on.
参考書
Reference Book
G. James & M. Liebeck: Representations and characters of groups 2nd ed, Cambridge University Press 2001
A. Zimmermann: Representation Theory: A Homological Algebra Point of View, Algebra and Applications 19, Springer 2014
K. Erdmann, T. Holm: Algebras and representation theory. Springer 2018

課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
None
注意事項
Notice for Students
None
他学科聴講の可否
Propriety of Other department student's attendance
Any student is welcome to attend the course
他学科聴講の条件
Conditions of Other department student's attendance
See necessary material (履修条件)
レベル
Level
2-3
キーワード
Keyword
representation theory, finite group, ordinary representations, ordinary character theory, rings and modules, symmetric groups
履修の際のアドバイス
Advice
The course is a good opportunity to practice listening to and doing mathematics in English.
この科目は英語での数学を使う機会があって,学生さんが挑戦してみてほしいです.
授業開講形態等
Lecture format, etc.
The course will be in-person. If necessary, online and remote methods will also be implemented.
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)
If need arises, lectures will be recorded or held online.