授業の目的 【日本語】 Goals of the Course(JPN) | | データサイエンス特別講義1,2,3を基礎とし,トランスクリプトミクスやプロテオミクスの実際,またメタボロミクスを含めたマルチオミクスの概要を学ぶ. |
|
|
授業の目的 【英語】 Goals of the Course | | Based on Data Science 1, 2 and 3, this course introduces practical approaches of transcriptomics and proteomics, and outline of multi-omics including metabolomics. |
|
|
到達目標 【日本語】 Objectives of the Course(JPN) | | データサイエンス特別講義1,2,3を基礎とし,トランスクリプトミクスやプロテオミクスの実際,またメタボロミクスを含めたマルチオミクスの概要についての知識を修得する. |
|
|
到達目標【英語】 Objectives of the Course | | Based on Data Sciences 1, 2 and 3, in this course, students get knowledge of practical approaches of transcriptomics and proteomics, and outline of multi-omics including metabolomics. |
|
|
授業の内容や構成 Course Content / Plan | | 1. Preparing a computing environment for NGS analysis in Linux operating system. Lecture for basics of the Linux commands. Usage instructions of bioinformatics tools for the NGS analysis. 2. Guidance for RNA-Seq data analysis pipelines (read mapping, calculation of the expression values and statistical analysis). Guidance for genome-wide DNA methylation data analysis (read mapping and calculation of DNA methylation levels). 3. Big data and bioinformatics analysis in proteomics. 4. Application of bioinformatics in peptide and protein engineering. 5. Outline of metabolomics. 6. Application of multi-omics. |
|
|
履修条件・関連する科目 Course Prerequisites and Related Courses | | Special Lecture on Data Science 1, 2 and 3 |
|
|
成績評価の方法と基準 Course Evaluation Method and Criteria | | Evaluate each lesson by attendance and short report. |
|
|
教科書・テキスト Textbook | | |
|
参考書 Reference Book | | |
|
課外学習等(授業時間外学習の指示) Study Load(Self-directed Learning Outside Course Hours) | | After lecture, students should learn about practice of omics study by reading scientific papers and by accessing to webtools for omics study. |
|
|
使用言語 Language Used in the Course | | This course will be taught in Japanese or English. All course materials are in English. |
|
|
授業開講形態等 Lecture format, etc. | | |
|
遠隔授業(オンデマンド型)で行う場合の追加措置 Additional measures for remote class (on-demand class) | | |
|