学部・大学院区分
Undergraduate / Graduate
学部
時間割コード
Registration Code
0012231
科目名 【日本語】
Course Title
微分積分学Ⅰ
科目名 【英語】
Course Title
Calculus I
使用言語
Language Used in the Course
日本語
担当教員 【日本語】
Instructor
濱中 真志 ○
担当教員 【英語】
Instructor
HAMANAKA Masashi ○
単位数
Credits
2
開講期・開講時間帯
Term / Day / Period
Ⅰ 火曜日 2時限
I Tue 2


授業の目的 【日本語】
Goals of the Course [JPN]
定量的変化を記述・分析する数学の分野が解析学であり,その中心的方法は微分積分学です。それは自然科学において必須の研究手法であるが,さらに近年社会科学などにも広く応用されます。本科目は通年講義の前半として,1変数微分積分学の基本を理解することを目的とします。特に極限の本質を理解し,対数関数・三角関数など初等関数の自由な解析的扱いができるようになることを重視します。
授業の目的 【英語】
Goals of the Course [ENG]
The field of mathematics that describes and analyzes quantitative changes is analysis, and its central method is calculus. It is an essential research method in the natural sciences, but in recent years it has been widely applied to the social sciences. The goal of this course is to understand the basics of one-variable differentiation and integration as the first half of the year-round lecture. In particular, it is important to understand the essence of the limit and to be able to handle elementary functions such as logarithmic functions and trigonometric functions freely.
授業の達成目標 【日本語】
Objectives of the Course [JPN]
一変数微分積分学の基本を理解します。特に,極限の本質を理解し,指数関数・対数関数・三角関数など初等関数の自在な解析学的取扱いができるようになることを重視します。
授業の達成目標 【英語】
Objectives of the Course [ENG]
The objectives of students are to understand the basics of analysis of functions in one variable and, in particular, to learn the concept of limit and how to treat analytically elementary functions such as the exponential, logarithmic and trigonometric functions.
授業の内容や構成
Course Content or Plan
授業内容は主に以下の項目より担当教員が適宜取捨選択します。実際の講義予定は別に提示します。

1。数列・関数の極限と連続性
 数列・関数の極限に関する基本的事項と連続関数の基本性質を学びます。
(基本)数列・関数の極限,有界単調数列の収束定理,連続関数の基本性質とその応用
(応用発展)実数の連続性・完備性,区間縮小法,ε-N論法,ε-δ論法
2。一変数関数の微分法
 微分の基本的性質およびその解析・幾何・物理的な意味について理解します。さらに,微分法を用いて関数の様々な性質について調べられるようにします。
(基本)微分の定義と幾何的意味,導関数と基本公式,逆三角関数の導関数,平均値の定理,高階導関数,テイラーの定理,不定形の極限,べき関数・指数関数・対数関数の収束発散の比較
(応用発展)平均値の定理の応用,極値問題,近似計算と誤差の評価,テイラー展開,べき級数の収束半径,凸性,ランダウの記号
3。一変数関数の積分法
 リーマン積分を通して定積分を理解します。さらに,広義積分について学習します。
(基本)区分求積法,定積分,不定積分,種々の関数の積分法,微分積分学の基本定理,広義積分
(応用発展)部分分数展開,微分方程式,連続関数の積分可能性,曲線の長さ,積分の収束発散の判定,ガンマ関数,ベータ関数
履修条件・関連する科目
Course Prerequisites and Related Courses
高校数学の内容を既知とします。微分積分学IIとあわせて完結した講義となります。
成績評価の方法と基準
Course Evaluation Method and Criteria
中間・期末試験とレポートなどで評価
教科書
Textbook
三宅敏恒「入門微分積分」(培風館)
参考書
Reference Book
川平友規「微分積分 1変数と2変数」(日本評論社)
南和彦「微分積分講義」(裳華房)
小林昭七「微分積分読本」(裳華房)
課外学修等
Study Load (Self-directed Learning Outside Course Hours)
自宅での復習・演習が不可欠です。
注意事項
Notice for Students
本授業に関するWebページ
Reference website for this Course
https://www.math.nagoya-u.ac.jp/~hamanaka/
担当教員からのメッセージ
Message from the Instructor
実務経験のある教員等による授業科目(大学等における修学の支援に関する法律施行規則に基づくもの)
Courses taught by Instructors with practical experience
授業開講形態等
Lecture format, etc.
B-1)対面授業科目(一部遠隔)として実施します。感染症の爆発的流行などの場合に遠隔授業を行います。そのときはTACT のお知らせにて指示します
対面授業の場合の講義室は、時間割B表(名大ポータル>教養教育院ページ掲載)を確認すること。