学部・大学院区分
Undergraduate / Graduate
多・博前
時間割コード
Registration Code
3211001
科目区分
Course Category
A類Ⅰ(基礎科目)
Category A-1
科目名 【日本語】
Course Title
数理科学展望Ⅰ
科目名 【英語】
Course Title
Perspectives in Mathematical Science I
コースナンバリングコード
Course Numbering Code
担当教員 【日本語】
Instructor
GARRIGUE JACQUES ○ 林 正人 Neal Bez
担当教員 【英語】
Instructor
GARRIGUE JACQUES ○ HAYASHI Masahito Neal Bez
単位数
Credits
2
開講期・開講時間帯
Term / Day / Period
春 金曜日 2時限
Spring Fri 2
授業形態
Course style

学科・専攻
Department / Program
Graduate School of Mathematics
必修・選択
Required / Selected
Elective


授業の目的 【日本語】
Goals of the Course(JPN)
英語を参照
授業の目的 【英語】
Goals of the Course
The first part of the course (Bez) will cover the Brascamp-Lieb inequality
The second part of the course (Garrigue) will survey the foundations of proof assistants, such as AUTOMATH, Mizar, Isabelle, Coq/Rocq or Lean, which allow one to formally prove the correctness of theorems using computers.
The third part of the course (Hayashi) will cover Information-theoretic security.
到達目標 【日本語】
Objectives of the Course(JPN))
英語を参照
到達目標 【英語】
Objectives of the Course
Part 1: To understand the fundamental theory of the Brascamp-Lieb inequality and some geometric applications
Part 2: Understanding the logical foundations and the differences between different approaches to computer-assisted mathematical proofs.
Part 3: Understanding the basics of information-theoretical security.
授業の内容や構成
Course Content / Plan
Part 1: The Brascamp-Lieb inequality
Lecture 1: The Loomis-Whitney inequality
Lecture 2: The Prekopa-Leindler inequality
Lecture 3: An introduction to the general Brascamp-Lieb inequality
Lecture 4: The geometric Brascamp-Lieb inequality
Lecture 5: The cube slicing problem

Part 2: Foundations of proof assistants (Garrigue)
The lectures will cover the different logical frameworks used by proof assistants, such as Tarski–Grothendieck set theory (Mizar), Higher-order logic (Isabelle), Type Theory (Coq/Rocq and Lean).

Part 3: Information theoretical security (Hayashi)
Lecture 1. Notations on probability theory
Lecture 2. Introduction of Information measure
Lecture 3. Security measure
Lecture 4. Hash function
Lecture 5. Leftover hashing lemma
履修条件
Course Prerequisites
Part 1: Undergraduate calculus and linear algebra. Knowledge of the Lebesgue integral will be useful.
Part 2: No requirement, but a basic knowledge of logic and set theory is useful.
Part 3: Undergraduate calculus and linear algebra.
関連する科目
Related Courses
Part 1: Undergraduate calculus and linear algebra
Part 2: Set theory
Part 3: Undergraduate linear algebra, Undergraduate calculus, Undergraduate probability
成績評価の方法と基準
Course Evaluation Method and Criteria
Grading is based on reports for the 3 parts.
The grade is based on the two best reports for each student.
教科書・テキスト
Textbook
No textbook is used.
参考書
Reference Book
Recommended books will be introduced in the lecture.
課外学習等(授業時間外学習の指示)
Study Load(Self-directed Learning Outside Course Hours)
Review of each lecture is highly recommended.
注意事項
Notice for Students
-
他学科聴講の可否
Propriety of Other department student's attendance
Possible
他学科聴講の条件
Conditions of Other department student's attendance
Ask the instructors first
レベル
Level
2
キーワード
Keyword
Part 1: Brascamp-Lieb inequality, Loomis-Whitney inequality, Prekopa-Leindler inequality, Brunn-Minkowski inequality, cube slicing problem
Part 2: Theorem proving, Formal logic, Set theory, Type theory
Part 3: Information measure, information leakage, hash function
履修の際のアドバイス
Advice
-
授業開講形態等
Lecture format, etc.
Face-to-face lecture (+ TACT when necessary)
遠隔授業(オンデマンド型)で行う場合の追加措置
Additional measures for remote class (on-demand class)
Access to TACT is needed